Kong, L., Zhong, M., Shuang, W., Xu, Y. & Bu, X.-H. Electrochemically active sites within crystalline porous materials for energy storage and conversion. Chem. Soc. Round. 492378-2407 (2020).
Slater, AG & Cooper, AI Functional design of new porous materials. Science 348aaa8075 (2015).
Wang, J. et al. New perspectives on structure-performance relationships of mesoporous materials in analytical science. Chem. Soc. Round. 478766–8803 (2018).
Geng, K. et al. Covalent organic frameworks: design, synthesis and functions. Chem. Round. 1208814–8933 (2020).
Lee, J.-SM & Cooper, AI Advances in Conjugated Microporous Polymers. Chem. Round. 1202171-2214 (2020).
Finnefrock, AC, Ulrich, R., Toombes, GES, Gruner, SM & Wiesner, U. The plumber’s nightmare: new morphology in block-ceramic copolymer nanocomposites and mesoporous aluminosilicates. Jam. Chem. Soc. 12513084–13093 (2003).
Meza, LR, Das, S. & Greer, JR Strong, lightweight, retrievable three-dimensional ceramic nanoarrays. Science 3451322-1326 (2014).
Zhou, J. & Wang, B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem. Soc. Round. 466927–6945 (2017).
Sun, M.-H. et al. Applications of hierarchically structured porous materials of energy storage and conversion, catalysis, photocatalysis, adsorption, separation and detection in biomedicine. Chem. Soc. Round. 453479–3563 (2016).
Vyatskikh, A. et al. Additive manufacturing of 3D nano-structured metals. Nat. Common. 9593 (2018).
Hirt, L., Reiser, A., Spolenak, R. & Zambelli, T. Additive manufacturing of metal structures at the micrometer scale. Adv. Mater. 291604211 (2017).
Google Scholar
Ullal, CK et al. Photonic crystals by holographic lithography: simple cubic, diamond-shaped and gyroid-like structures. Appl. Phys. Lett. 845434–5436 (2004).
Park, H. & Lee, S. Double gyroids for frequency-isolated Weyl points in the visible regime and interference lithographic design. ACS Photonics seven1577-1585 (2020).
Phan, A. et al. Synthesis, structure and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 4358–67 (2010).
Furukawa, H., Cordova, KE, O’Keeffe, M. & Yaghi, OM The chemistry and applications of metal-organic frameworks. Science 3411230444 (2013).
Armstrong, E. & O’Dwyer, C. Man-made opal photonic crystals and reverse opal structures – fundamentals and applications of optics to energy storage. J. Mater. Chem. VS 36109–6143 (2015).
Hoeven, JES, van der, Shneidman, AV, Nicolas, NJ & Aizenberg, J. Evaporation-induced self-assembly of metal oxide reverse opals: from synthesis to applications. Acc. Chem. Res. 551809–1820 (2022).
Friedrichs, OD, Dress, AWM, Huson, DH, Klinowski, J. & Mackay, AL Systematic enumeration of crystal lattices. Nature 400644–647 (1999).
Yaghi, OM et al. Reticular synthesis and design of new materials. Nature 423705–714 (2003).
Hoffman, F. Introduction to crystallography (Springer Nature, 2020).
Mirkin, CA, Letsinger, RL, Mucic, RC & Storhoff, JJ A DNA-based method for rationally assembling nanoparticles in macroscopic materials. Nature 382607–609 (1996).
Samanta, D., Zhou, W., Ebrahimi, SB, Petrosko, SH, and Mirkin, CA Programmable matter: the nanoparticle atom and the DNA bond. Adv. Mater. 34e2107875 (2022).
Macfarlane, RJ et al. Engineering nanoparticle superlattices with DNA. Science 334204-208 (2011).
O’Brien, MN, Lin, HX, Girard, M., Olvera De La Cruz, M. & Mirkin, CA Programming a colloidal crystal habit with anisotropic nanoparticle building blocks and DNA linkages. Jam. Chem. Soc. 13814562–14565 (2016).
Tian, Y. et al. Network engineering through nanoparticle-DNA frameworks. Nat. Mater. 15654–661 (2016).
Zhang, T et al. 3D DNA origami crystals. Adv. Mater. 301800273 (2018).
Google Scholar
Ham, S., Jang, H.-J., Song, Y., Shuford, KL & Park, S. Gold octahedral and cubic nanoframes with platinum frame. Angelw. Chem. Int. Edn Engl. 549025–9028 (2015).
Yang, T.-H. et al. Nanoframes of noble metals and their catalytic applications. Chem. Round. 121796–833 (2021).
Wang, Y. et al. Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano seven4586–4594 (2013).
Auyeung, E. et al. DNA-mediated nanoparticle crystallization in Wulff polyhedra. Nature 50573–77 (2014).
Auyeung, E., Macfarlane, RJ, Choi, CHJ, Cutler, JI, and Mirkin, CA Transition of DNA-engineered nanoparticle superlattices from solution to solid state. Adv. Mater. 245181–5186 (2012).
Oh, T et al. Stabilization of colloidal crystals modified with DNA. Adv. Mater. 311805480 (2019).
Google Scholar
Jones, MR et al. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater. 9913–917 (2010).
Senesi, AJ et al. The flexibility of oligonucleotides dictates the crystal quality in DNA-programmable nanoparticle superarrays. Adv. Mater. 267235–7240 (2014).
Gong, J. et al. Shape-dependent order of gold nanocrystals in large-scale superlattices. Nat. Common. 814038 (2017).
Tian, Y. et al. Three-dimensional nanomaterials ordered using DNA-prescribed, valence-controlled material voxels. Nat. Mater. 19789–796 (2020).
Smith, DR, Pendry, JB & Wiltshire, MCK Metamaterials and negative refractive index. Science 305788–792 (2004).
Shelby, RA, Smith, DR & Schultz, S. Experimental verification of a negative refractive index. Science 29277–79 (2001).
Sun, L. et al. Growth controlled by the position and orientation of Wulff-shaped colloidal crystals engineered with DNA. Adv. Mater. 322005316 (2020).
Millstone, JE, Wei, W., Jones, MR, Yoo, H., and Mirkin, CA Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett. 82526-2529 (2008).
Young, KL et al. Assembly of reconfigurable one-dimensional colloidal superlattices through a synergy of fundamental nanoscale forces. proc. Natl Acad. Science. UNITED STATES 1092240-2245 (2012).
O’Brien, MN, Jones, MR, Brown, KA & Mirkin, CA Universal seeds of noble metal nanoparticles made by iterative reductive growth and oxidative dissolution reactions. Jam. Chem. Soc. 1367603–7606 (2014).
Li, Y. et al. Growth of nanocrystals controlled by corners, edges and facets. Science. Adv. seveneabf1410 (2021).
Kremer, JR, Mastronarde, DN & McIntosh, JR Computer visualization of three-dimensional image data using IMOD. J. Structure. Biol. 11671–76 (1996).
Yan, R., Venkatakrishnan, SV, Liu, J., Bouman, CA & Jiang, W. MBIR: A 3D cryo-ET reconstruction method that effectively minimizes missing corner artifacts and restores missing information. J. Structure. Biol. 206183-192 (2019).
Johnson, PB & Christy, RW Optical constants of noble metals. Phys. Rev. B 64370–4379 (1972).
Werner, WSM, Glantschnig, K. & Ambrosch-Draxl, C. Optical constants and inelastic electron scattering data for 17 elemental metals. J.Phys. Chem. Ref. Data 381013-1092 (2009).
#Open #Channel #Metal #Particle #Superlattices #Nature