Open Channel Metal Particle Superlattices – Nature

  • Kong, L., Zhong, M., Shuang, W., Xu, Y. & Bu, X.-H. Electrochemically active sites within crystalline porous materials for energy storage and conversion. Chem. Soc. Round. 492378-2407 (2020).

    CAS PubMed Google Scholar

  • Slater, AG & Cooper, AI Functional design of new porous materials. Science 348aaa8075 (2015).

    Google Scholar PubMed

  • Wang, J. et al. New perspectives on structure-performance relationships of mesoporous materials in analytical science. Chem. Soc. Round. 478766–8803 (2018).

    CAS PubMed Google Scholar

  • Geng, K. et al. Covalent organic frameworks: design, synthesis and functions. Chem. Round. 1208814–8933 (2020).

    CAS PubMed Google Scholar

  • Lee, J.-SM & Cooper, AI Advances in Conjugated Microporous Polymers. Chem. Round. 1202171-2214 (2020).

    CAS PubMed PubMed Central Google Scholar

  • Finnefrock, AC, Ulrich, R., Toombes, GES, Gruner, SM & Wiesner, U. The plumber’s nightmare: new morphology in block-ceramic copolymer nanocomposites and mesoporous aluminosilicates. Jam. Chem. Soc. 12513084–13093 (2003).

    CAS PubMed Google Scholar

  • Meza, LR, Das, S. & Greer, JR Strong, lightweight, retrievable three-dimensional ceramic nanoarrays. Science 3451322-1326 (2014).

    ADS CAS PubMed Google Scholar

  • Zhou, J. & Wang, B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem. Soc. Round. 466927–6945 (2017).

    CAS PubMed Google Scholar

  • Sun, M.-H. et al. Applications of hierarchically structured porous materials of energy storage and conversion, catalysis, photocatalysis, adsorption, separation and detection in biomedicine. Chem. Soc. Round. 453479–3563 (2016).

    CAS PubMed Google Scholar

  • Vyatskikh, A. et al. Additive manufacturing of 3D nano-structured metals. Nat. Common. 9593 (2018).

    ADS PubMed PubMed Central Google Scholar

  • Hirt, L., Reiser, A., Spolenak, R. & Zambelli, T. Additive manufacturing of metal structures at the micrometer scale. Adv. Mater. 291604211 (2017).

    Google Scholar

  • Ullal, CK et al. Photonic crystals by holographic lithography: simple cubic, diamond-shaped and gyroid-like structures. Appl. Phys. Lett. 845434–5436 (2004).

    Google Scholar CAS Announcements

  • Park, H. & Lee, S. Double gyroids for frequency-isolated Weyl points in the visible regime and interference lithographic design. ACS Photonics seven1577-1585 (2020).

    CAS Google Scholar

  • Phan, A. et al. Synthesis, structure and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 4358–67 (2010).

    CAS PubMed Google Scholar

  • Furukawa, H., Cordova, KE, O’Keeffe, M. & Yaghi, OM The chemistry and applications of metal-organic frameworks. Science 3411230444 (2013).

    Google Scholar PubMed

  • Armstrong, E. & O’Dwyer, C. Man-made opal photonic crystals and reverse opal structures – fundamentals and applications of optics to energy storage. J. Mater. Chem. VS 36109–6143 (2015).

    CAS Google Scholar

  • Hoeven, JES, van der, Shneidman, AV, Nicolas, NJ & Aizenberg, J. Evaporation-induced self-assembly of metal oxide reverse opals: from synthesis to applications. Acc. Chem. Res. 551809–1820 (2022).

    PubMed PubMed Central Google Scholar

  • Friedrichs, OD, Dress, AWM, Huson, DH, Klinowski, J. & Mackay, AL Systematic enumeration of crystal lattices. Nature 400644–647 (1999).

    Google Scholar CAS Announcements

  • Yaghi, OM et al. Reticular synthesis and design of new materials. Nature 423705–714 (2003).

    ADS CAS PubMed Google Scholar

  • Hoffman, F. Introduction to crystallography (Springer Nature, 2020).

  • Mirkin, CA, Letsinger, RL, Mucic, RC & Storhoff, JJ A DNA-based method for rationally assembling nanoparticles in macroscopic materials. Nature 382607–609 (1996).

    ADS CAS PubMed Google Scholar

  • Samanta, D., Zhou, W., Ebrahimi, SB, Petrosko, SH, and Mirkin, CA Programmable matter: the nanoparticle atom and the DNA bond. Adv. Mater. 34e2107875 (2022).

    Google Scholar PubMed

  • Macfarlane, RJ et al. Engineering nanoparticle superlattices with DNA. Science 334204-208 (2011).

    ADS CAS PubMed Google Scholar

  • O’Brien, MN, Lin, HX, Girard, M., Olvera De La Cruz, M. & Mirkin, CA Programming a colloidal crystal habit with anisotropic nanoparticle building blocks and DNA linkages. Jam. Chem. Soc. 13814562–14565 (2016).

    Google Scholar PubMed

  • Tian, ​​Y. et al. Network engineering through nanoparticle-DNA frameworks. Nat. Mater. 15654–661 (2016).

    ADS CAS PubMed PubMed Central Google Scholar

  • Zhang, T et al. 3D DNA origami crystals. Adv. Mater. 301800273 (2018).

    Google Scholar

  • Ham, S., Jang, H.-J., Song, Y., Shuford, KL & Park, S. Gold octahedral and cubic nanoframes with platinum frame. Angelw. Chem. Int. Edn Engl. 549025–9028 (2015).

    CAS Google Scholar

  • Yang, T.-H. et al. Nanoframes of noble metals and their catalytic applications. Chem. Round. 121796–833 (2021).

    CAS PubMed Google Scholar

  • Wang, Y. et al. Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano seven4586–4594 (2013).

    CAS PubMed Google Scholar

  • Auyeung, E. et al. DNA-mediated nanoparticle crystallization in Wulff polyhedra. Nature 50573–77 (2014).

    ADS PubMedGoogle Scholar

  • Auyeung, E., Macfarlane, RJ, Choi, CHJ, Cutler, JI, and Mirkin, CA Transition of DNA-engineered nanoparticle superlattices from solution to solid state. Adv. Mater. 245181–5186 (2012).

    CAS PubMed Google Scholar

  • Oh, T et al. Stabilization of colloidal crystals modified with DNA. Adv. Mater. 311805480 (2019).

    Google Scholar

  • Jones, MR et al. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater. 9913–917 (2010).

    ADS CAS PubMed Google Scholar

  • Senesi, AJ et al. The flexibility of oligonucleotides dictates the crystal quality in DNA-programmable nanoparticle superarrays. Adv. Mater. 267235–7240 (2014).

    CAS PubMed Google Scholar

  • Gong, J. et al. Shape-dependent order of gold nanocrystals in large-scale superlattices. Nat. Common. 814038 (2017).

    ADS CAS PubMed PubMed Central Google Scholar

  • Tian, ​​Y. et al. Three-dimensional nanomaterials ordered using DNA-prescribed, valence-controlled material voxels. Nat. Mater. 19789–796 (2020).

    ADS CAS PubMed Google Scholar

  • Smith, DR, Pendry, JB & Wiltshire, MCK Metamaterials and negative refractive index. Science 305788–792 (2004).

    ADS CAS PubMed Google Scholar

  • Shelby, RA, Smith, DR & Schultz, S. Experimental verification of a negative refractive index. Science 29277–79 (2001).

    ADS CAS PubMed Google Scholar

  • Sun, L. et al. Growth controlled by the position and orientation of Wulff-shaped colloidal crystals engineered with DNA. Adv. Mater. 322005316 (2020).

    CAS Google Scholar

  • Millstone, JE, Wei, W., Jones, MR, Yoo, H., and Mirkin, CA Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett. 82526-2529 (2008).

    ADS CAS PubMed PubMed Central Google Scholar

  • Young, KL et al. Assembly of reconfigurable one-dimensional colloidal superlattices through a synergy of fundamental nanoscale forces. proc. Natl Acad. Science. UNITED STATES 1092240-2245 (2012).

    ADS CAS PubMed PubMed Central Google Scholar

  • O’Brien, MN, Jones, MR, Brown, KA & Mirkin, CA Universal seeds of noble metal nanoparticles made by iterative reductive growth and oxidative dissolution reactions. Jam. Chem. Soc. 1367603–7606 (2014).

    Google Scholar PubMed

  • Li, Y. et al. Growth of nanocrystals controlled by corners, edges and facets. Science. Adv. seveneabf1410 (2021).

    ADS CAS PubMed PubMed Central Google Scholar

  • Kremer, JR, Mastronarde, DN & McIntosh, JR Computer visualization of three-dimensional image data using IMOD. J. Structure. Biol. 11671–76 (1996).

    CAS PubMed Google Scholar

  • Yan, R., Venkatakrishnan, SV, Liu, J., Bouman, CA & Jiang, W. MBIR: A 3D cryo-ET reconstruction method that effectively minimizes missing corner artifacts and restores missing information. J. Structure. Biol. 206183-192 (2019).

    PubMed PubMed Central Google Scholar

  • Johnson, PB & Christy, RW Optical constants of noble metals. Phys. Rev. B 64370–4379 (1972).

    Google Scholar CAS Announcements

  • Werner, WSM, Glantschnig, K. & Ambrosch-Draxl, C. Optical constants and inelastic electron scattering data for 17 elemental metals. J.Phys. Chem. Ref. Data 381013-1092 (2009).

    Google Scholar CAS Announcements

  • #Open #Channel #Metal #Particle #Superlattices #Nature

    Leave a Comment

    Your email address will not be published. Required fields are marked *